Deep Reinforcement Learning
for Control & Robotics

How it Works, Where it Works, and Where it Doesn'’t (yet!)

Jonathan Scholz

O DeepMind

Goals of This Tutorial

1. Intuitive understanding of how RL algorithms work

2. Survey of Policy Gradient Methods

3. How can you apply this to your robotics problems?

@ DeepMind

Outline

e Motivational videos

e Part 1: Q-Learning Walkthrough

e Part 2: Policy-Gradient Survey
e Vanilla Policy-Gradient Methods
e Value-Gradient Methods

e Open Challenges

@ DeepMind

RL Success Stories — Grasp (QT-Opt)

Singulation

Learned reactive
grasp behaviors

@ DeepMind

video source

https://ai.googleblog.com/2018/06/scalable-deep-reinforcement-learning.html

RL Success Stories — Locomotion (ANYmal)

Recovery Behaviors

YSL RSL YSL

s
W L

B

BVENin variod§ |eg configurations

video source

https://medium.com/syncedreview/you-cant-keep-an-rl-powered-anymal-down-1a86c15a7384

RL Success Stories — Manipulation (OpenAl)

FINGER PIVOTING SLIDING FINGER GAITING

video source

b DeepMind

https://openai.com/blog/learning-dexterity/

Outline

e Motivational videos

e Part 1: Q-Learning Walkthrough

e Part 2: Policy-Gradient Survey
e Vanilla Policy-Gradient Methods
e Value-Gradient Methods

e Open Challenges

@:\, DeepMind

Markov Decision Process

MDP = {Sv A7T7 R, (7)}

s2 s3
5 {81, 52,53, 84}
- I - I A = {up, down, left, right }
s 4 = Plgls a)
®) 102 5 =54 :
@ - I ®) I O i { —1, otherwise Problem:
sometimes we
can’t do this
Ik —_— Value-lteration
y - 8 . while Vs € S: [Vi(s) — Viy1(s)| > e do
| Lo o) Bels gty e e o
% end while feere e mawane

= max Q(s,a)

'b DeepMind

b DeepMind

From Q-function to Q-Learning

= Key question: How to remove dependency on model?

Q(s,a) = R(s,a)+7 max Z P(s'|s,a)Q(s',ad) by definition
~ R(s,a)+7 max C;(s’, a), s ~P(sls,a) sample approximation
~ (1-a0)Q(s,a)+a (R(s, a) + 7 max Q(s, a’)) smoothing
~ Q(s,a) — aQ(s,a) + aR(s,a) + ay max Q(s',ad)
~ Q(s,a)+a (R(s, a) + 7y max Q(s,d") — Q(s, a)) canonical form
~ Q(s,;a)+ a(érp) TD error

20

Q-Learning

s2 s3 t 1 -
'I 'I 51 0 0
sl s4
&) S 0 0
@ -|‘ ‘ @[10 2
S, 0 0
o=.7 S4 0 0
Q-Table

b DeepMind

b DeepMind

Q-Learning

=
1

®)
®)

10

Qest(S1 ,1.) =

7(-1+.9max (0,0,0,0)+.3x0

1] =

S, -7 0

S | 0 0

S, 0 0

S, 0 0
Q-Table

b DeepMind

Q-Learning

Qest(Sz,

) =
7(-1+ .9 max (0, ?o, 0))+ 3x0

= =
S, | -7 | o 0
S | 0 0 -7/
S. | 0 0 0
S. | o 0 0
Q-Table

b DeepMind

Q-Learning

L B

®
@10

Qest(Sy

) =
7(-1+ .9 max (0, ?o, 0))+ 3x0

= =
S, | -7 | o 0
S, 0 0 -7
S .0 0 -7
S, |0 0 0
Q-Table

b DeepMind

Q-Learning

nEN

B

Qest(Sy

§)-
7(-1+.9max (0,0, 0,0))+.3x0

= =
S. | -7 | 0 0
S, 0 0 -7
s [.0 IS -7
S, |0 0 0
Q-Table

b DeepMind

Q-Learning

‘ 1|3 o= =
- | - | s, | -7 : :
S, | 0 1 0 -7
o z
S; 0 -7 -7
Qest(s,-)=
7(10+ .9 max (0, 0,0, 0)) + .3 x 0 2, | 0 0 0
Q-Table

b DeepMind

Q-Learning

-|‘ @4
8o

Qest(S4’ t):
7(10 + .9 max (0, -7,0,-.7)) + .3 x 0

= =
S. | -7 | 0 0
S, 0 0 -7
S. o | -7 -7
s, I 0 0
Q-Table

b DeepMind

nEN
8o

Qest(Sy l):
7(-1+ .9max (7,0,7,0)) + .3 x-.7

Q-Learning

= =
S, | -7 | o 0
S, 0 0 -7
S, | 0o NS -7
S, | 7 0 0
Q-Table

Pros and Cons of Tabular Q-Learning

Converges... eventually

Pros

e Optimality guarantees

e Monotonic policy improvement*

e Does not require knowing a transition model
Cons

e Scales horribly ... Curse of dimensionality

e Only works for discrete state-action spaces

*if doing full policy-evaluation before updating

© DeepMind

e

b DeepMind

Linear Function Approximation

S1

S2

66

Sy

One-hot encoding of states and actions

w

[1,0,0, 0] T=01,0,0,0]
0.1 0 0] §=00,1,0,0]

1
2

v

Linear Function Approximation

Represent Q as a linear function of features

/gz\T/é\
e
g o1

Bl

b DeepMind

Non-Linear Function Approximation

Represent Q as a non-linear function of features, e.g.:

Q(s,a) = 9A1 maX(O,9A23 S 9A3a + 93)

2

b DeepMind

Neural Networks

Represent Q as a non-linear function of features, eg

Q(s,a) = 04,ReLu(0a,s + 04,0 + 0p)

@ ReLu(z) = max(0, x)

b DeepMind

Deep Neural Networks

Compose Nonlinear Functions

Q(s,a) = HAIRGLU.(QBl o (QAQRQLU.(QBQ S 9A3S SF 9A4a)

@ Deep-RL!

b DeepMind

Example Modern Deep RL Architecture

Key point: the RL algorithm

doesn't care about the £ 5
parameterization 5 2 oo
§" s g = é’ = ‘g’ ” Grasping Value Function
= Sees same 1-2 quantities: g8 {1 B EN v
: i 1; (472, 472, 3) Log Loss
1. Action (log) probabilities L
. . Gripper Rotation r =3 F
2. ACtIOn-Va|Ue estlmate a Open Gripper Jopen —Jp - % Target Value Function
i (.;IoseGr.iPper Jelose = § - ‘é’ % - § — arg max Qé(S/, a/)
= Nice property: RL losses can epmbenl asa | | |- a’
5 S O
be used to drive DL feoe o ok

representation Ieammg Q-Network from QT-Opt, Kalashnikov 2018

‘b DeepMind

Q-Learning — Take aways

e Directly learns empirical return (cost-to-go)

e Q absorbs all future outcomes in a single statistic
e Generic, but very sample-inefficient
e Only has global optimum guarantees in tabular setting

e Key to scaling = function approximation (rest of this talk)

6 DeepMind

Outline

e Motivational videos

e Part 1: Q-Learning Walkthrough

e Part 2: Policy-Gradient Survey
e Vanilla Policy-Gradient Methods
e Value-Gradient Methods

e Open Challenges

@ DeepMind

(silly) Example Continuous
Action Space

. Lsin(0)]

? —S+[[cos(6)] }

‘b DeepMind

Motivation

a=0¢cR!

0.0 | 0.01 | 0.02

Q... Table?

One Solution

Parameterize the policy explicitly!

can make this a

/policy parameter too
E.g. a Gaussian Policy
; . o T 2

for continuous actions > 7TG<37 a) = N(”SS) 0,0)

Can do with discrete

actions too (SoftMax) > mg(s,a) o eﬁ(s

. Some basis for state

(and actions), e.g. RBF

New problem: How to optimize the parameters of our policy?

6 DeepMind

Policy Optimization Problem Statement

e J: an objective function measuring policy
performance

e Gradient of J w.r.t. 8: the direction to change
each policy parameter to increase (or decrease)
our objective

e Key question for this talk: How to estimate this
gradient efficiently?

= Simpler question: how to estimate the
gradient of the expectation of a function of
a random-variable?

fb DeepMind

00 = V()

8J(0)
90,

Nl

8J(0)
50,

VoExr, [V (s0)]

VoE,(2:0) [f(2)]

Simplest Approach — Finite Differences

For each dimensioniin [1, n]:

= estimate th partial-derivative by perturbing J(0) = Ep(z) [f(2)]
ith component of 8 by a small amount

8J(8) _ J(0+ew) - J(O)

(97; €

Requires n evaluations of J to compute
gradient for policy with n parameters

= Each evaluation of J may involve
numerous executions/simulations to u; is a vector with

: : 1 in jth component
approximate the expectation and 0 elsewhere

= |nefficient, but simple and works for any
policy, even if non-differentiable

Q‘ DeepMind

Detour: Score-Function Estimators

a.k.a. the log-derivative trick
a.k.a. likelihood-ratio

e Wanttoestimate E,.0)[f(2)] z~ p(z;0)

e Require VyE,(,.0)[f(z)] for optimization

Vop(z;0)
p(z;0)

o Usefulidentity: Vylogp(z;0) =

fb DeepMind

Detour: Score-Function Estimators

a.k.a. the log-derivative trick
a.k.a. likelihood-ratio

Vop(s; 0)
p(s;0)

== Exchange the derivative and the integral
¢ Probabilistic identity trick

¢ | 0g-lerivative trick

¢ Back to expectation

(Z -) Z(s) o p(Z) == Sample approximation

'b DeepMind

Stochastic Objective

Score-Function Estimators

a.k.a. the log-derivative trick

Stochastic Gradient

15

f(z)

0.5

p(z)

T

/ p(2)f(2)VIogp(z)

0.5

This quantity is what
we'll approximate with
samples

courtesy Shakir M

http://blog.shakirm.com/2015/11/machine-learning-trick-of-the-day-5-log-derivative-trick/

Generalizing to Control

The random variable is
now the action a

p(2;0) — plag|se; 0) = mo(ai|se)

All a are conditionally
independent given the state s,
and parameterized by the policy

The “function” is now the Return

6 DeepMind

f(z) — Z r(s¢, ar)

t

Vanilla Policy Gradient — Single time-step “Bandit”

6‘ DeepMind

VoJ (0

gquantity: the start-
gstate distribution p(s);

! /7‘(‘9&' (s,a) da ds
wowe

— /p(s)/w@(a|s)V9 logwe(a|3)r(s,a da ds

i
1 - .
=y E Vo log mg(a]s)r (s, o)
s=1

where s ~ p(s),a® ~ my(-|s?)

Figure credit: N. Heess

Generalizing to Trajectories

Zr(st,at)

p(7) = p(s0)m(ao|so)p(s1]s0, ao)m(a1]s1)p(s2|s1,a1) . .. J(0) = Ep(r) }
t Figure credit: N. Heess

c DeepMind

@ DeepMind

Policy Gradient — Trajectories

V@ log 7T9(CLO|80)R0

Figure credit: N. Heess

@ DeepMind

Policy Gradient — Trajectories

0 log 7T9(CLO|80)R0
E%Vg log mg(a1|s1) Ry

¢

Figure credit: N. Heess

Policy Gradient — Trajectories

0 log 7y’ (CLO|80)R0
2 Vo log mg(ai|s1) Ry
Vo log mg(az|s2) R

. .« o e
------ e
e 2, 63 -
L 1
H is
H :
H 7
L 7
H H o
s . <
--------- i

Figure credit: N. Heess

@ DeepMind

The Policy Gradient Theorem

VQJ(H) o]Eﬂe [VQ log o (CL‘S)QW(S, CL)]

T

The “return” under . Doesn't
stipulate how this is estimated

fb DeepMind

The Reinforce Algorithm

function REINFORCE
Initialise 6 arbitrarily
for each episode {s1,a1,rm,...,sT_1,ar_1,rr} ~ 7 do
fort=1to 7T —1do
0 <+ 0+ aVglog mg(st, at) Ry
end for -
end for
return 60
end function

b DeepMind

Problems with Vanilla Policy Gradient?

What if all our rewards are All our gradient
1000-1001, vs, say 0-1? —> estimates are 1000x!
Would still have Could change our
variance due to states h learning rates...

© DeepMind

Detour Cont'd: Adding a Baseline

a.k.a. control variate
vQIEp(z;G) [f(Z)] = IEp(z;@) [(f(Z) = b)V@ logp(z; 0)]

Can be arbitrary
Won't affect expectation if not function of 6

But, why? Why?

= To make variance as = Ep(20)[f(2) Vg log p(2; 0)] — b/ (z;0)Vglogp(z;0)dz
low possible
— By [£(2)V0logp(z:6)] ~ b [Vap(z:0)dz

= Natural candidate:

— By [£(2) V0 log p(3:0)] — 0¥ [p(z:0)dz

~ B onlizValoepz0ll Seie e
Naconst = U

6‘ DeepMind

@ DeepMind

Policy Gradient — Variance Reduction

What's a good candidate
for the trajectory case?

< b= Er(als;0)[V (5)]

Figure credit: N. Heess

Policy Gradient — Variance Reduction

Vg log mp(as|st)[Re — V(s¢)]

‘1 |
Vo logmo(a|s:)|@" (st,a1) — Vﬁ(st)]]

t‘

Z Vg log 7T9(at|3t)[Q(8t’ ay) — V(St)]

Figure credit: N. Heess

Return Surrogates

Z Vg log We(at|3t)@3ta at) —@St)]]

Er,

e Value-baseline removes variance in policy gradient across states, by “absorbing” stochasticity in the
dynamics (and policy) into a separate expectation

e But what if the reward itself is stochastic?
» We have an estimator for exactly this statistic: Q!
e The PG theorem actually gives a sound basis for using Q instead of the empirical return

e Subject to some technical conditions on compatibility between the policy and critic, but we usually
don't worry about this in DL setting.

6 DeepMind

Policy Gradient — Menu of Algorithms

VoJ(0) = Er, [Vologmy(a|s)Q" (s, a)]

Various estimators for Qr

Vo (6) =By, [Vologmy(als)]~ unbiased, high var
L e
= Ex, [Vologmo(als)(Q"(s,a) — V(s))
—Ex, [Vologmo(als)(ri + - + 7" rei + 71V (s148) = V(s0)

Q‘ DeepMind

K-step Truncated
Advantage

Policy-Gradient Recap

Intuition: a Monte-Carlo estimator that uses samples of the total return as
weights to “reinforce” good action gradients

e The likelihood-ratio trick unpacks to Vv, logp(z;0) =
e Has an intuitive interpretation:

e Scales gradient inversely proportional to the action probability, to
compensate for the policy’s preference for this action

Vop(z;0)
p(z;0)

A: Would have stronger gradients

Q: What would happen if we simply scaled for actions we tried a lot

by E,, [Vemg(als)Q7 (s,a)] instead? = \Would reinforce arbitrary

initialization!

(Forget our derivation for a moment)

6 DeepMind

Policy Gradient — Take aways

e Foundational of most modern RL algorithms
e Pros:

= Minimal assumptions: only (log) policy has to be differentiable; the rest is
samples

= Supports both discrete and continuous states and actions

= Well studied, many tricks to reduce variance, e.g. value-functions
e Cons

= Still not very efficient, e.g. for robotics

= Only defined for on-policy case; each data-point used once

= Sensitive to hyper parameters

6 DeepMind

Outline

e Motivational videos

e Part 1: Q-Learning Walkthrough

e Part 2: Policy-Gradient Survey
e Vanilla Policy-Gradient Methods
e Value-Gradient Methods

e Open Challenges

@ DeepMind

Value Gradients — Intuition

= Alternative way to get a policy gradient that |
directly asks the critic for the ascent ”_I_J““””ﬂ LLJ i L
direction in action-space, rather than monte-
carlo estimating by sampling it

= Has some trade-offs vs. Vanilla PG, but on net
is more applicable to robotics®

*Opinion of the author :)

b DeepMind

Q: The Truncated Trajectory Gradient

T

T

Q(x,a)

—f1 =M ()=
4/ IT l l

v o
E 8

Gradients provide a lot of information, especially in high-dimensional spaces!
Can we exploit gradients more directly for policy search? Slidecredit:N. Heess

‘b DeepMind

Handling Stochasticity

e How to back-propogate through a stochastic policy (or critic, or model)?
(Can't back-propogate through an RNG)

@ DeepMind

Detour: Pathwise Derivative Estimators

a.k.a. the reparameterization trick

Key idea: replace a random variable with
a deterministic transformation of a .
simpler random variable €™~ ple)

Gaussian Example

N(u, RRY) = u+ Re, e~ N(0,1)

melies legal change of variables :
z ~p(z;0) =g(f,¢),e ~ N(0,1) _} v
R

@ Desibiing Possible with many common probability distributions

z = pu+ Re®

courtesy Shakir M

http://blog.shakirm.com/2015/11/machine-learning-trick-of-the-day-5-log-derivative-trick/

Detour: Pathwise Derivative Estimators

a.k.a. the reparameterization trick

e) = / p(z 0) f(2)dz

= V@/p(e)f(g(Q,E))de ¢ Change of variables
= VoEu)[f(9(0,€))]
=Ep([Vof(g(0,€)) =

= Ep)[V2f(9(0,€))Vog(0,€)] ¢——chainrute!

@ DeepMind

Stochastic Value Gradients (SVG)

Recall Vanilla Policy-Gradient

Eqmpo anmy [Vo log ma(als) Q" (s,)]

Stochastic Value-Gradient

EsprO ,p(€) [V@?TQ(S, E)an(Sv CI,) |a:71’9(s,6)]

SVG

= Compared to VPG, replaces expectation over
actions w/ expectation over noise source

= Derivative of all model components now
inside the expectation

6 DeepMind

Figure credit: N. Heess

Deterministic Policy Gradient (DPG)

Recall Vanilla Policy-Gradient

Eqmpo anmy [Vo log ma(als) Q" (s,)]

Deterministic Policy-Gradient

]ESNPWQ [VGWG(S)VGQ(Sa a’) ‘azﬂe(s)]

= |imiting case of SVG as noise -> 0

Figure credit: N. Heess

6 DeepMind

Off-policy learning & experience replay

Key idea: train policy = using data from a different behavior policy u (e.g. 7old, human, ...

Experience replay: a database of experience tuples / trajectories

BEDE Replay buffer -
= = == Experience tuple (s,a,r,s’)
ss s ases

y=1+vQq(s',mo(s"))

Ap x Vy(y — Qp(s,a))?
Policy update [A@ & Vome(s) Vamm,(s)Qe(s; @)

Value-fn update

7 Sy
W

(

40, A

New Parameters

¢ . DeepMind
b & Slide credit: N. Heess

Value gradients in practice: SVG & DPG

Master algorithm:

(initialize 7, wterget () Qtarget
for i=1...ndo
Collect data with behavior policy 7°

Sample minibatch B of samples s;, as, ¢, S¢11]. - -]
Compute @ update using B, 7%79¢ and Q! 9¢!
Compute ™ update using B and @)
if mod(i, M) = 0 then

T 7.(.target

Q — Qtarget
end if
kend for

~

Add trajectory data to replay sq, ag, 70, S1,01,71,- - -

b DeepMind

Key ingredients:

1. Arbitrary behavior policy
2. Off-policy learning of Q"

3. Off-policy updates of =

4. Experience replay

5. Target networks for stability

» i.e. an old version of our network
parameters that we update periodically

Slide credit: N. Heess

Value gradients in practice: SVG & DPG

Master algorithm:

(initialize 7, wterget () Qtarget
for i=1...ndo
Collect data with behavior policy m°

Sample minibatch B of samples s¢, a, ¢, S¢11]- - -]
Compute @ update using B, 7%79¢ and Q! 9¢!
Compute ™ update using B and @)
if mod(i, M) = 0 then

T 7.{.target

Q — Qtarget
end if
kend for

Add trajectory data to replay sq, ag, 70, S1,01,71,- - -

b DeepMind

Can act with arbitrary policy to
collect data. E.g. for DPG

70 (s) = m(s) + €
where e ~ N(0,0?)

Slide credit: N. Heess

Value gradients in practice: SVG & DPG

Master algorithm: Off policy Q-learning

(initialize 7, wtarset, Q. Qtarget ™\ Core insight:
for i=1...n do W T
=7ri(s,a)+E V" (s|s,a
Collect data with behavior policy 7° Q (’) [(’))]
Add trajectory data to replay sg, ag, 79, S1,a1,71,- - -
Sample minibatch B of samples s¢, as, ¢, S¢11]- - -]
Compute Q update using B, 7%"9¢" and Q' 9¢

Compute ™ update using B and @)
if mod(i, M) = 0 then

is true for any tuple (s, a, r, s’)!

T 7.{.target Update fOF Q:
enin: Qtarget y = 7“(8, CL) o Qtarget (S, 7I_taurget(S))
_end for) Ap x Vyly — Qoyls, a))2
b DeepMind

Slide credit: N. Heess

Value gradients in practice: SVG & DPG

Master algorithm:

(initialize 7, wterget () Qtarget
for i=1...ndo
Collect data with behavior policy 7°

Sample minibatch B of samples s;, as, ¢, S¢11]. - -]
Compute @ update using B, 7%79¢ and Q! 9¢!
Compute m update using B and @)
if mod(é, M) = 0 then

T 7.{.target

Q — Qtarget
end if
kend for

Add trajectory data to replay sq, ag, 70, S1,01,71,- - -

~

b DeepMind

Policy update

DPG:
Af x V@W@(S)VC—LNM(S)Q(MS, C_L)

SVG:

Af Ep(e) [VQWQ(S, E)vawwe(s,e)Q(b(S? d)]

Slide credit: N. Heess

Off-Policy Methods — Textbook Version

Q(s,a) + Q(s,a) + a(R(s,a) +vQ(s',a’) — Q(s,a))
A A A AA

state action + reward + (next) (next) = SARSA
State action

r=-1 +— - safe path

=) Otherwise same as Q-learning, but “on-policy” rEmssmmEsmE
p» Use a’instead of maxa when computing target T

m) | ess greedy, so addresses problem of locally high- ke
reward/risk states (e.g. cliff task) e
vl el
epsiode
mp Otherwise, Q-learning and SARSA both looking at
essentially the same data... right? e e e
Episodes

b DeepMind

Off-Policy Methods — Closer Look

m» Distinction is fundamental

p Some algorithms, e.g. VPG, only make sense
on-policy

=) Distinction is practical

» Many algorithms, e.g. IMPALA are slightly off-
policy due to delays

p Off-policy data can come from any policy, e.g.
people

b DeepMind

Off-Policy RL Success Story

Imitation + RL — DPG from Demonstrations (Vecerik 2018)

4
£

Robustness t« turbations

video source

6‘ DeepMind

https://sites.google.com/corp/view/dpgfd-insertion/home

A few other tricks to get this working

e Add both successful and unsuccessful expert demonstrations
to seed replay memory

e Auxiliary loss for classifying demonstrator actions
e Need to learn a reward function from pixels

e Need a safety - compliance module

e Tuning all hyper-parameters

e Distributional Q-function

6 DeepMind

Value Gradient — Take aways

e Policy Gradients purely by back-propagation
e Pros:
= Same general setting as VPG
= (Can be trained on-policy or off-policy
= (Can use stochastic or deterministic policies
= More efficient; lets you re-use data
e Cons:
= Generally less stable than VPG methods

© DeepMind

Value-Based and Policy-Based Methods

Value-Function

-
-
. LB

Ly] P

Value-Based Actor-Critic Policy-Based

QT-Opt A3C REINFORCE
CEM DPG
NAF SVG

TRPO
MPO

@ DeepMind Presentation Title — SPEAKER

Off-Policy and On-Policy Methods

Estimates value Estimates value

of greedy policy _of current policy
given data from ==--.. i
other policies

On-Policy
REINFORCE
A3C

TRPO

Off-Policy
DPG
SVG

QT-Opt
MPO
IMPALA*

@j DeepMind Presentation Title — SPEAKER

Policy Gradient — Summary

3 ways to compute policy gradients

Finite-Difference Vanila PG

= Use if policy and critic are = Use if your policy is

non-differentiable differentiable but critic /
return are not

= Most expensive - requires
expectation for each = Much cheaper and lower
partial derivative, scales variance than FD; pulls
linearly with # policy gradient computation inside
params expectation analytically

Q‘ DeepMind

Value-Gradients

= Use if your policy and value
function are both differentiable

= |Lowest variance; expectation
only over states and possibly a
noise-generator

= Caveat: Value networks not
trained to have good gradients,
so can see unstable “delusion”
behavior.

Outline

e Motivational videos

e Part 1: Q-Learning Walkthrough

e Part 2: Policy-Gradient Survey
e Vanilla Policy-Gradient Methods
e Value-Gradient Methods

e Open Challenges

@f DeepMind

_.L'

Open Challenges

Hyperparam Sensitivity

Sample Efficiency

Someone right now is making this
face trying to solve a math problem

(=

Off-policy Learning

Imitation Learning

Model-based RL

b DeepMind

The “Ugly” — Learning Curves

What we say our learning curves look like What they actually look like

— Dueling DDQN /

200%- . A3C N
o —— Distributional DQN -100
S — Noisy DQN A v
5 == Rainbow f
8 N -300
E
-500
g
5 -700
20.00k 60.00k 100.0k 140.0k 180.0k
» High Variance
» Failures due to random seed
Millions of frames » Imagine what actual hyper-params do

6 DeepMind

The “Ugly” — Instrumentation for Real Experiments

Can train “end-to-end” ... if you
provide object features as
observations or rewards

@ DeepMind

Where Doesn’'t RL Work Yet?

In short.. everywhere

= Combinatorially complex tasks, e.g. assembly
» Motion planning still dominates, even in sim

= | ong-horizon tasks that can't be simulated well
= Anywhere data is expensive (wouldn’t use DPG to learn Atlas backflip)
= Anything on industrial arms (too stiff to explore safely)

© DeepMind

Conclusion

If you're looking for an RL algorithm to apply for your tasks I'd suggest:
= A2C, if you're in sim and want to implement it yourself

= TRPO if you're in sim and just want to get going with RL without fiddling
with hypers

= DPG/SVG (or RSO0) if you're on a real robot and willing to put time in to
tune. Warning: still a bit of an art requiring both DL and RL intuition

= MPO, if you want to be up with the recent trends

6 DeepMind

Important Topics Not Covered

e Asynchronous Methods (A3C, IMPALA, QT-Opt, ..)

e Trust-Region Methods (TRPO, PPO, Natural Gradient, ...)

e Model-Based Methods (iLQG, MPC, SVG(k), GPS, ...)

e EM-based Methods (PoWER, REPS, MPO, ...

e Off-Policy Corrections (ACER, Retrace, V-trace [in IMPALA], ...)

e Trajectory-Based Representations (DMPs, Splines, ...)

© DeepMind

THANK YOU

